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Abstract

There is a need in machine learning to find representations of signals in
physical quantities suited for particular learning tasks: feature extraction.
To understand these representations, it is of interest to compare how the
energy of the original signal behaves in feature space. The general framework
of operators in Hilbert spaces provides uncertainty principles that could be
specified to many different feature transforms. We derive these UP formulas,
show the connection between operators and transforms, and examine specific
cases of the UP as well as lay the groundwork to calculating UP inequalities
for custom transforms and operators.

1 Introduction.With the continued rise of machine learning’s popularity, so
has been the weight placed on finding representations of data optimized for certain
learning tasks [6]. As an example: for the task of classifying the chords played in a
Beatles’ song, a representation like the spectrogram is a more efficient1 input to a
machine learning classifier than the raw waveform of the song. For tasks and data
found in the real world it is not always clear that a particular representation, like
the signal’s frequency distribution over time, is the essential physical quantity to
store and send to a classifier. Therefore it is important to have a framework for
general ways to expand a signal to extract a physical quantity; that quantity could
then be important for some learning tasks like ”what notes are in this song?” or
”what animal is in this image?”.

A signal can be expanded as:

x(t) =

∫
F (a)u(a, t)da

We call u(a, t) expansion functions. The a’s are values of some physical quantity
(they may be continuous or discrete, but here we only consider the continuous
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1in terms of space vs classification accuracy, among other reasons
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case). F (a) is the transform of the signal, and intuitively tells us how important
a particular a is for the given signal. Finding a F (a) for an instance of data x(t)
could be called feature extraction, and it is the hope that x(t) can be more simply
characterized in the representation F (a) and give more insight to the nature of
x(t), which the machine learning algorithm should exploit.

If we know how to compute some feature F (a) for a signal, we are interested
in characterizing the relationship between x(t) and F (a), for example we want
to know how the localization of energy in one affects the energy spread in the
other. In quantum mechanics, it is a postulate that measurements are made by
applying an operator A in a Hilbert space H on a signal x(t), after which the
result is not known, but the average result is expressed as a linear combination of
eigenfunctions u(a, t) (i.e. from solving the eigenvalue problem Au(a, t) = au(a, t))
of that operator each weighted by some probability [8]. In this abstract setting of
operators we can use basic tools to find interesting inequalities with a wide array
of interpretations and consequences. Two creative formulas comparing the spread
of a function in two domains, each defined by the spectrum of an operator, will
provide the framework to compare two signals x(t) and F (a)
2 Notations and essential facts.We denote the adjoint of an operator A as
A†, which is another operator which forces the equality, x, y ∈ H a Hilbert space:∫

y(t)Ax(t)dt =

∫
x(t)A†y(t)dt

which in the case that A is self-adjoint, i.e. A = A†, results in∫
y(t)Ax(t)dt =

∫
x(t)Ay(t)dt (1)

Proposition 1 ([3]). Any operator may be written as a sum of a self-adjoint
operator plus i times a self-adjoint operator.

Proof. Note that (A+A†)† = A+A† and
(
A−A†

i

)†
= A†−A

−i = A−A†

i
are self-adjoint

operators. Then we may write:

A =
1

2
(A+ A†) +

1

2
i
A− A†

i
(2)

proving the proposition.

Repeated use of an operator n-times is denoted An.

Definition 1 ([3]). A function x of an operator A is defined by first expanding the
ordinary function in a Taylor series and then substituting the operator A. That is

if x(a) =
∞∑
n=0

xna
n then x(A) =

∞∑
n=0

xnA
n
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Definition 2 (Expectations of operators [3]). The average, average square, and
variance of a self-adjoint operator for a signal x(t) are:

Ex(A) =

∫
x(t)Ax(t)dt

Ex(A2) =

∫
x(t)A2x(t)dt =

∫
|Ax(t)|2dt

σ2
x(A) = Ex(A2)− Ex(A)2 =

∫
x(t)(A− Ex(A))2x(t)dt =

∫
|(A− Ex(A))x(t)|2dt

The commutator of two operators is [A,B] = AB −BA, the anti-commutator
is [A,B]+ = AB +BA

For random variables X, Y , the covariance may be expressed as

cov(X, Y ) = E[XY ]− E[X]E[Y ] =
1

2
E[XY + Y X]− E[X]E[Y ]

= E[(X − E[X])(Y − E[Y ])] =
1

2
E[(X − E[X])(Y − E[Y ]) + (Y − E[Y ])(X − E[X])]

This may act as inspiration for a similar quantity for general operators:

Definition 3 (The covariance of two operators [4]).

Covx(A,B) =
1

2
Ex(AB +BA)− Ex(A)Ex(B)

=
1

2
Ex([A− Ex(A), B − Ex(B)]+)

3 The Uncertainty Principle for arbitrary variables.

Theorem 1 (First Uncertainty Principle [2, 7, 5]). Let A,B be self-adjoint op-
erators on a complex Hilbert space H. If x ∈ D(A2) ∩ D(B2) ∩ D(i[A,B]) and
‖x‖ ≤ 1 then

4σ2
x(A)σ2

x(B) ≥ (Ex(i[A,B]))2

Proof. First of all, since A and B are self adjoint we have:

Ex(A) = 〈Ax, x〉 = 〈x,Ax〉 = 〈Ax, x〉 = Ex(A) ∈ R
Ex(rA) = 〈rAx, x〉 = r 〈Ax, x〉 = r 〈x,Ax〉 = 〈x, rAx〉 = Ex(rA) ∈ R

and the same for B (where the second line shows that multiplication by r ∈ R
preserves self-adjointness). We note

Ex(x)i[A,B] = 2Im(Ex(BA)) (3)
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since the inner product is linear:

Ex(i[A,B]) = iEx(AB −BA) = i(〈ABx, x〉 − 〈BAx, x〉)
= i(〈Bx,Ax〉 − 〈Ax,Bx〉) = i(〈Ax,Bx〉 − 〈Ax,Bx〉)
= 2Im(〈Ax,Bx〉) = 2Im(Ex(BA))

Next:
|Ex(B + iA)|2 = |Ex(B) + iEx(A)|2 = Ex(A)2 + Ex(B)2 (4)

And by Cauchy Schwartz:

|Ex(B+iA)|2 = | 〈B + iA)x, x〉 |2 ≤ ‖x‖2 ‖(B + iA)x‖2 ≤ ‖(B + iA)x‖2 = Ex(|B+iA|2)
(5)

Also
Ex(|B + iA|2) = Ex(B2) + Ex(A2)− 2Im(Ex(BA)) (6)

since:

Ex(|B + iA|2) = ‖(B + iA)x‖2

= 〈(B + iA)x, (B + iA)x〉
= 〈Bx,Bx〉 − i 〈Bx,Ax〉+ i 〈Ax,Bx〉+ 〈Ax,Ax〉
= Ex(B2) + Ex(A2)− i(〈Bx,Ax〉 − 〈Ax,Bx〉)
= Ex(B2) + Ex(A2)− 2Im(Ex(BA))

(5), (6) give us

|Ex(B + iA)|2 ≤ Ex(B2) + Ex(A2)− 2Im(Ex(BA))

and after substituting (4) and shuffling we have:

Ex(B2)− Ex(B)2 + Ex(A2)− Ex(A)2 ≥ 2Im(Ex(BA))

we can rewrite the above setting A→ rA and B → sB:

s2(Ex(B2)− Ex(B)2) + r2(Ex(A2)− Ex(A)2) ≥ 2rsIm(Ex(BA))

finally plugging in r2 = Ex(B2)−Ex(B)2 and s2 = Ex(A2)−Ex(A)2 and squaring
both sides yields:

(Ex(A2)− Ex(A)2)(Ex(B2)− Ex(B)2) ≥ (Im(Ex(BA)))2 =
1

4
(Ex(i[A,B]))2

which proves the theorem.
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We may use the Cauchy Schwartz inequality in a different way to arrive at a
slightly stronger version of the uncertainty principle.

Theorem 2 (Second Uncertainty Principle [4, 3]). Let A,B be self-adjoint oper-
ators on a complex Hilbert space H. If x ∈ D(A2) ∩D(B2) ∩D([A,B]). Then

4σ2
x(A)σ2

x(B) ≥ |Ex([A,B])|2 + 4Covx(A,B)2

Proof. Let A0 = A− Ex(A) and B0 = B − Ex(B). We may see

σ2
x(A)σ2

x(B) ≥ |Ex(A0B0)|2 (7)

by expanding the integrals:

σ2
x(A)σ2

x(B) =

∫
|A0x(t)|2dt

∫
|B0x(t)|2dt

≥
∣∣∣∣∫ A0x(t)B0x(t)dt

∣∣∣∣2
=

∣∣∣∣∫ x(t)A0B0x(t)dt

∣∣∣∣2
= |Ex(A0B0)|2

We note that Ex(A0B0) may not be real since A0B0 may not be self-adjoint. Now
we plug A = A0B0 (and therefore A† = B†0A

†
0) into proposition 1 obtaining, since

A0 and B0 are self-adjoint:

A0B0 =
1

2
(A0B0 +B0A0) +

1

2
i
A0B0 −B0A0

i
=

1

2
([A0, B0]+) +

1

2
i
[A0, B0]

i

where ([A0, B0]+) and [A0,B0]
i

are self adjoint by the proposition. Therefore using
linearity of the inner product:

|Ex(A0B0)|2 =

∣∣∣∣Ex(1

2
([A0, B0]+) +

1

2
i
[A0, B0]

i
)

∣∣∣∣2
=

1

4
|Ex([A0, B0]+)|2 +

1

4
|Ex([A0, B0])|

=
1

4
(|Ex([A0, B0])|2 + |Ex([A0, B0]+)|2)

showing:
4σ2

x(A)σ2
x(B) ≥ |Ex([A0, B0])|2 + |Ex([A0, B0]+)|2
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Finally, note:

[A0, B0] = A0B0 −B0A0

= (A− Ex(A))(B − Ex(B))− (B − Ex(B))(A− Ex(A))

= AB −BA = [A,B]

and that Ex([A0, B0]+) = 2Covx(A,B), showing that:

4σ2
x(A)σ2

x(B) ≥ |Ex([A,B])|2 + 4Covx(A,B)2

Proving the theorem.

As stated in the proof, [A0, B0]+ is self-adjoint, making Ex([A0, B0]+) = 2Covx(A,B) ∈
R so that 4Covx(A,B)2 ≥ 0. Therefore 4σ2

x(A)σ2
x(B) ≥ |Ex([A,B])|2+4Covx(A,B)2 ≥

|Ex([A,B])|2 which is compatible with the first UP.
4 Representation of Signals.We are interested in using these two abstract
UPs to understand signals in terms of some physical quantity represented by an
operator. The UPs can help us understand, for example, a signal’s density, average
value, and spread in a physical quantity. To do this, we first expand the signal
as a linear combination of basis functions obtained by solving the eigenvalue for
some operator of interest.

For the discrete eigenvalue case we have the Hilbert-Schmidt theorem, also
known as the Spectral Theorem:

Theorem 3 (Hilbert-Schmidt[9]). Let A be a self-adjoint compact operator on a
Hilbert space H. Then, there is a complete orthonormal basis {un} for H so that

Aun(t) = anuu(t) (8)

and an → 0 as n→∞.

We will primarily be concerned with the continuous eigenvalue case:

Theorem 4 ([1]). Let A be a self-adjoint operator on a Hilbert space H. Then:

Au(a, t) = au(a, t)

where

i. The eigenvalues a of A are real.

ii. The eigenfunctions u(a, t) of A are orthogonal.

iii. If A is a linear, second order differential operator then the eigenfunctions
u(a, t) of A form a complete set.
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Part i is important from a physical standpoint because in nature measurable quan-
tities are often real. Cohen alludes that Part iii remains true for all self-adjoint
operators [4, 3].

If these three properties are in place we can easily find the coefficients in a
synthesis equation for x

x(t) =

∫
F (a)u(a, t)da (9)

in the following way. First note:∫
u(a′, t)u(a, t)dt = δ(a− a′) (10)

so that after multiplying (9) by u(a′, t) and integrating with respect to time:∫
x(t)u(a′, t)dt =

∫∫
F (a)u(a, t)u(a′, t)dadt

=

∫
F (a)δ(a− a′)da

= F (a′)

(11)

leaving us with an analysis equation:

F (a) =

∫
x(t)u(a, t)dt (12)

We refer to F (a) as the A-transform of x(t).

Proposition 2 ([3]). If u(a, t) is an eigenfunction of the operator A then:

f(A)u(a, t) = f(a)u(a, t)

Proof. Since u(a, t) is an eigenfunction of A we have that Au(a, t) = au(a, t),
moreover Anu(a, t) = anu(a, t). Plugging this into the definition of a function of
an operator and recognizing the ordinary Taylor series, we have:

f(A)u(a, t) =
∞∑
n=0

fnA
nu(a, t) =

∞∑
n=0

fna
nu(a, t) = f(a)u(a, t)

proving the proposition.
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5 Computing Averages.Now we are ready to prove an interesting correspon-
dence rule. If the density of some physical quantity a is taken to be |F (a)|2 (which
may not integrate to 1), then the average value of a is

EF (a) =

∫
a|F (a)|2da

and more generally the average value of some function g(a) is:

EF (g(a)) =

∫
g(a)|F (a)|2da

It turns out that we can calculate these averages without calculating the transform
F (a).

Proposition 3 ([4]). If A is an operator, and F (a) is the A-transform of x(t),
then:

Ex(g(A)) =

∫
x(t)g(A)x(t)dt =

∫
g(a)|F (a)|2da = EF (g(a))

Proof. From the definition, we plug in (9), use proposition 2, and (10):

Ex(g(A)) =

∫
x(t)g(A)x(t)dt

=

∫ (∫
F (a′)u(a′, t)da′

)
g(A)

(∫
F (a)u(a, t)dadt

)
=

∫ ∫ ∫
F (a′)u(a′, t)g(A)u(a, t)F (a)da′dadt

=

∫ ∫ ∫
F (a′)u(a′, t)g(a)u(a, t)F (a)da′dadt

=

∫ ∫ ∫
F (a′)F (a)g(a)u(a′, t)u(a, t)dtda′da

=

∫ ∫
F (a′)F (a)g(a)δ(a− a′)da′da

=

∫
F (a)F (a)g(a)da

=

∫
g(a)|F (a)|2da

= EF (g(a))

proving the proposition.

Proposition 3 also means that we can compute expectations of operators with
expectations of ordinary functions.

8



6 Instances of the UP.An important operator is the frequency operator defined

by D = 1
i
d
dt

.2 The eigenvalue problem is Du(ω, t) = ωu(ω, t) and the solutions are
u(ω, t) = cejωt, ω ∈ R [4]. To find the normalization constant c we consider:∫

u∗(ω′, t)u(ω, t)dt = c2
∫
e−jωtejω

′tdt = 2πc2δ(ω − ω′)

implying c = 1√
2π

so that u(ω, t) = 1√
2π
ejωt. This leaves us with a familiar looking

version of (12):

F (ω) =
1√
2π

∫
x(t)e−jωtdt = x̂(ω)

the Fourier transform.
From Proposition 3 we have a rule of associating a function of ordinary variables

with an operator. In the case of D:∫
g(ω)|x̂(ω)|2dω =

∫
x(t)g(D)x(t)dt (13)

This correspondence means D =

{
1
i
d
dt

in the t representation

ω in the Fourier representation
(14)

If we have a signal, and want to calculate average frequencies without calculating
the Fourier transform, we can use (13). Similarly if we have a Fourier transform
and want to calculate time averages without calculating the signal, we can use the
time operator defined by: X = i d

dω
. From Proposition 3 we have∫

g(t)|x(t)|2dt =

∫
x̂(ω)g(X)x̂(ω)dω (15)

This correspondence means X =

{
t in the t representation

i d
dω

in the Fourier representation
(16)

In this case the eigenvalue problem is tu(t, t′) = t′u(t, t′), and we could conclude
u(t, t′) = δ(t− t′).

Now we specify the abstract uncertainty principles with A,B to D,X and
recognize the well known Heisenberg uncertainty principle. For the left hand side
we use the two correspondence rules (13), (15) to write down:

σ2
x(D) =

∫
x(t)(D − Ex(D))2x(t)dt =

∫
(ω − Ex̂(ω))2|x̂(ω)|2dω

σ2
x(X) =

∫
x(t)(X − Ex(X))2x(t)dt =

∫
(t− Ex(t))2|x(t)|2dt

(17)

2To prove it is self-adjoint do integration by parts and make an argument similar to this one.
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where we have moved from calculations with non-commuting operators to calcu-
lations with ordinary commuting variables.

For the right hand sides we compute the commutator [X,D] = i via:

(XD −DX)x(t) = (t
1

i

d

dt
− 1

i

d

dt
t)x(t)

=
1

i
(t
dx(t)

dt
− d(tx(t))

dt
)

=
1

i
(t
dx(t)

dt
− x(t)− tdx(t)

dt
)

= −1

i
x(t) = ix(t)

so that theorem 1 becomes:

4σ2
x(X)σ2

x(D) ≥ (Ex(i[X,D]))2

4

(∫
(t− Ex(t))2|x(t)|2dt

)(∫
(ω − Ex̂(ω))2|x̂(ω)|2dω

)
≥ 1

(18)

Note in this instantiation of the UP that the left hand side is the variance of the
signal in time (σ2

t ) times the variance of the signal in frequency (σ2
p) (with the

magnitude of the signal squared and magnitude of the Fourier transform squared
taken as densities). This is consistent with the famed Heisenberg uncertainty
principle in quantum mechanics: σtσp ≥ ~

2
where operators X and D are multiplied

by the Planck constant ~ and called the ”position” and ”momentum” operators.
6.1 An instance of the second UP.To instantiate theorem 2 it is meaningful
to consider an example signal. Let x(t) be a quadratic phase signal with Gaussian
envelope:

x(t) = (α/π)1/4 exp(−αt2/2 + iβt2/2 + iγt) (19)

First note |x(t)|2 = x(t)x(t) =
√

α
π

exp(−αt2). Then:

Ex(X) =

∫
x(t)Xx(t)dt =

∫
tx(t)x(t)dt =

√
α

π

∫
t exp(−αt2)dt = 0

Ex(X2) =

∫
x(t)X2x(t)dt =

∫
tx(t)x(t)dt =

√
α

π

∫
t2 exp(−αt2)dt =

1

2α

where we recognized the mean and variance of a mean zero normally distributed
random variable.
In fact

∫ √
α
π

exp(−αt2) =
∫
|x(t)|2 = ‖x‖2 = 1. Next we can notice

Dx(t) = (iαt+ βt+ γ)x(t)
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so that:

Ex(D) =

∫
x(t)Dx(t)dt =

√
α

π

∫
(iαt+ βt+ γ) exp(−αt2) = γ

similarly:

Ex(D2) =

∫
x(t)D2x(t)dt =

√
α

π

∫
|iαt+ βt+ γ|2 exp(−αt2)

=

∫
(α2t2 + β2t2 + 2βtγ + γ2) exp(−αt2)

=
α2 + β2

2α
+ γ2

Therefore:

σ2
x(D) = Ex(D2)− Ex(D)2 =

α2 + β2

2α

σ2
x(X) = Ex(X2)− Ex(X)2 =

1

2α

And for the covariance Covx(X,D) = 1
2
Ex(XD + DX) − Ex(X)Ex(D) we first

note:

Ex(XD+DX) = Ex(XD+DX−DX+XD) = 2Ex(XD)−E[X,D] = 2Ex(XD)−i

and calculate:

Ex(XD +DX) =

∫
x(t)(2XD − i)x(t)dt

=

∫
x(t)(2tDx(t)− ix(t))dt

=

∫
x(t)(2t(iαt+ βt+ γ)x(t)− ix(t))dt

=

√
α

π

∫
(2iαt2 + 2βt2 + 2γt− i) exp(−αt2)dt

=
2iα + 2β

2α
− i

=
β

α

Recall [X,D] = i so |Ex([X,D])|2 = 1. Since Ex(X) = 0 we have 2Covx(X,D) =
Ex(XD +DA) = β

α
so that the right hand side of theorem 2 is:

|Ex([X,D])|2 + 4Covx(X,D)2 = 1 +
β2

α2
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this meets the left hand side of theorem 2:

4σ2
x(X)σ2

x(D) = 4
1

2α

α2 + β2

2α
= 1 +

β2

α2

which is in turn greater than the lower bound of theorem 1, (Ex(i[A,B]))2 = 1.
7 The Weyl Correspondence.In section 6 we were able to associate a function
of one ordinary variable with a function of an operator in (13) and (15), and com-
pute expectations. But if we have a function of two variables such as a(t, ω) = tω2

does this correspond to A(X,D) = XD2, DXD, D2X or some other concoction?
All of these choices are different since X and D do not commute. It is a relevant
question because for example, for the lower bounds in the UP we in general will
need to compute expectations of operators that are a function of two other opera-
tors. In the [X,D] case we were lucky that it reduced to a constant i, but we may
not be so lucky with future [A,B].

To associate a function of two ordinary variables with a function of an operator
what Hermann Weyl chose to do in 1928 is the following.

Definition 4 (Weyl Operator, Weyl Rule/Correspondence [3]). For a function
a(t, ω) define its Fourier transform by:

â(θ, τ) =
1

4π2

∫∫
a(t, ω) exp(−iθt− iτω)dtdω

in which case

a(t, ω) =

∫∫
â(θ, τ) exp(iθt+ iτω)dθdτ (20)

The Weyl operator A(X,D) corresponding to a(t, ω) is defined by substituting t→
X and ω → D in (20):

A(X,D) =

∫∫
â(θ, τ) exp(iθX + iτD)dθdτ (21)

To understand the operator exp(iτD) recall the Taylor series definition of a
function of an operator:

exp(iτD)x(t) =
∞∑
n=0

(iτ)nDn

n!
x(t) =

∞∑
n=0

τn

n!

dn

dtn
x(t) = x(t+ τ) (22)

This is called the translation operator. We are interested in disentangling exp(iθX+
iτD) in (21), since operators are not commuting there are methods such as:
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Proposition 4 (The Zassenhaus formula [3]). Let A and B be two linear operators,
then:

eA+B = eAeBe−
1
2
[A,B]e

1
3
[B,[A,B]]+ 1

6
[A,[A,B]]e−

1
24

([[[A,B],A]A]+3[[[A,B]A],B]+3[[[A,B],B],B])···

As a special case consider A = iθX and B = iτD, in which case [A,B] = −iθτ so
that this series terminates ([A, [A,B]] = [B, [A,B]] = 0). Then

exp(iθX+iτD) = exp(iθτ/2) exp(iθX) exp(iτD) = exp(−iθτ/2) exp(iτD) exp(iθX)
(23)

Using (23) we rewrite (21) and apply it on the Fourier transform x̂(ω) of a
signal:

A(X,D)x̂(ω) =

∫∫
â(θ, τ) exp(−iθτ/2) exp(iτD) exp(iθX)x̂(ω)dθdτ

After plugging in (4) and some laborious substitutions this can be shown to be
equivalent to:

A(X,D)x̂(ω) =
1

2π

∫∫
a(t,

1

2
(ω + θ)) exp(i(θ − ω)t)x̂(θ)dtdθ (24)

However, from (24), by multiplying by x̂(ω), integrating with respect to ω, and
making the substitution ω → ω + 1

2
, θ → ω − 1

2
θ, we obtain:∫

x̂(ω)A(X,D)x̂(ω)dω =
1

2π

∫∫∫
x̂(ω +

1

2
θ)a(t, ω) exp(−iθt)x̂(ω − 1

2
θ)dtdω

Ex̂(A(X,D)) =

∫∫
a(t, ω)W (t, ω)dtdω = EW (a(t, ω))

(25)

letting

W (t, ω) =
1

2π

∫
x̂(ω +

1

2
θ) exp(−iθt)x̂(ω − 1

2
θ)dθ

which is called the Wigner distribution. It can also be shown that Ex̂(A(X,D)) =
Ex(A(X,D)) [3].

The left hand side of (25) deals with operators, and the right hand side deals
with ordinary functions. The right hand side is an average of a(t, ω) with respect
to the density W (t, ω) (which is not always positive).
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8 Conclusion.We have started in the most general setting and written down
two UP inequalities in terms of expectations of operators. With the founda-
tional operators of time/position and frequency/momentum, X and D, we have
looked at a function (19) that minimizes the left hand side of the second UP:
4σ2

x(X)σ2
x(D) = |Ex([X,D])|2 + 4Covx(X,D)2. One further direction of interest

taken in [2] is to look at Gabor systems ϕm,n and wavelet systems ψm,n, and ex-
amine how far σ2

ϕm,n
(X)σ2

ϕm,n
(D) and σ2

ψm,n
(X)σ2

ψm,n
(D) are from the UP lower

bound, and how constraints like being a frame or an orthonormal basis affect the
size of σ2

x(X)σ2
x(D).

Another direction is to form UPs for other feature spaces. We have seen one
instance of the UPs with X and D. But we also know how to compute the
expectations for the UPs for any operator from proposition 3 and (25). X and D
can act as generators for other operators, like the translation operator from (22).
Another such example is C = 1

2
(XD + DX) the scale operator; the operation of

eiθC on x(t) is given by eiθCx(t) = eθ/2x(eθt), a time dilation. It is a big point of
Cohen’s in [3, 4] that equations of regular commuting variables may be associated
with equations of noncommuting operators through their expectations. It is these
features that make the two general UPs here usable in many contexts as a creative
formula.
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